《化学计量在实验中的应用》教案
作为一位优秀的人民教师,时常需要用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?以下是小编整理的《化学计量在实验中的应用》教案,希望能够帮助到大家。
《化学计量在实验中的应用》教案1一、教学目标
1、摩尔的基本概念。
2、物质的量、物质的质量、微粒数、物质的量浓度之间的相互关系。
3、气体摩尔体积的概念及阿伏加德罗定律在气体计算中的应用。
4、以物质的量为中心的一整套计算。
5、阿伏加德罗常数(NA)在微粒数、电子转移、溶液中溶质粒子等情况下的考察。
6、物质的量浓度的计算方法和配制实验。
二、教学重点、难点
重点:以物质的量为中心的一整套计算
难点:物质的量在实际中计算
三、教学过程
一、物质的量
1、物质的量
1)定义:表示含有一定数目粒子的集体的物理量,符号n 。
2)单位:摩尔(mol ) :把含有6.02×1023个粒子的任何粒子集体计量为1摩尔。摩尔是物质的量单位,molar 。
3)阿伏伽德罗常数:1摩尔物质中所含的“微粒数”。把6.02×1023mol-1叫阿伏伽德罗常数
4)公式:n=N/NA
2、摩尔质量(M)
1)定义:单位物质的量得物质所具有的质量叫摩尔质量
2)单位:g/mol或g.mol-1
3) 数量:1mol任意粒子或物质的量以克为单位时,其数值等于该粒子的相对原子质量或相对分子质量
4)公式:n=m/M
3、阿伏伽德罗定律
1)决定物质体积的三因素:微粒数目、微粒大小、微粒间距
气体主要决定于分子数的多少和分子间的距离
2)阿伏伽德罗定律:在相同的温度和压强下,相同体积的任何气体都含有相同数目的分子
【注意】阿伏伽德罗定律及推论使用的前提和对象:可适用于同温、同压的任何气体
3)公式:PV=nRT
4)推论:
①同温同压下:
②同温同体积:
二、气体摩尔体积
1、气体摩尔体积(V m)
1)定义:单位物质的量的气体所占的体积叫做气体摩尔体积
2)单位:L/mol
3)标准状况下00C 101KP 下,Vm=22.4L/mol
4)公式:n=V/Vm
三、物质的量浓度
1)定义:单位体积溶液里所含溶质B的物质的量来表示溶液组成的物理量,叫做溶质B的物质的量浓度
2)单位:mol/L
3)公式:C=n/V
2、一定物质的量浓度的配制
步骤:计算→称量→溶解→冷却→转移→洗涤→定容→摇匀→贮存溶液
四、作业布置
《化学计量在实验中的应用》教案2【学习目标】
理解物质的量浓度的含义并能进行有关计算
掌握配置一定物质的量浓度溶液的方法
【目标一】物质的量浓度
1.定义:以 里溶质B的 来表示溶液组成的物理量,叫做溶质B的物质的量浓度。
符号: 单位:
溶质B的物质的量(nB)、溶液的体积(V)和溶质的物质的量浓度(cB)之间的关系:
cB= 或 cB=
2.含义:在1L溶液中含有1l溶质,这种溶液中溶质的物质的量浓度就是1 l·L-1
【说明】① 溶液的体积不等于溶剂的体积,也不等于溶质和溶剂体积的简单加和。
② “溶质”是溶液中的溶质,可以指化合物,也可以指离子,如c(Na+)
③ 由于溶液是均一的,从一定物质的量浓度溶液中取出任意体积的溶液其浓度与原来溶液相同,但所含溶质的物质的量则因体积不同而不同。
④ 除完全相同的两份溶液相混合时,混合后的总体积等于原来两份液体的体积之和外,其余情况下两份液体混合后的总体积都不等于原来体积之和
⑤ 当往液体中加入固体或通入气体,发生反应或溶解后所得溶液体积也不等于原来液体体积,得按混合后溶液的质量和密度来算溶液的体积。
【目标二】关于物质的量浓度的计算:
⑴ 各量的关系:
n= n= n = V=
⑵ 物质的量浓度与溶质的质量分数间的关系:
公式:c= 在饱和溶液中,ω=
⑶ 一定物质的量浓度溶液的稀释 公式:c浓·V浓=c稀·V稀
⑷ 电解质溶液中溶质的物质的量浓度跟离子浓度间的关系:
在Ba(OH)2溶液中:c[Ba(OH)2] = c(Ba2+) = c(OH-)
在Fe2(SO4)3溶液中:c(Fe3+) = c(SO42-)
【目标三】一定物质的量浓度溶液的配制
【实验1-5】
1.实验步骤及仪器:
计算→称量(量取)→溶解(稀释)→冷却→转移→洗涤→振荡→定容→摇匀→装瓶贴签
步骤
2.注意事项
① 根据所配溶液的体积选取相应规格的容量瓶。如配950L某浓度溶液应选1000L的容量瓶,
确定溶质时,不能按照950L计算,要按照1000L计算。
② 容量瓶在使用前要检查是否漏水。
方法:a.加水→倒立→观察→正立。
b.瓶塞旋转1800→倒立→观察。
经检查不漏水的容量瓶才能使用,使用前必须把容量瓶洗涤干净,但不必干燥。
③ 容量瓶中不能将固体或浓溶液直接溶解或稀释,不能作为反应容器,也不能用来长期贮存溶液。
④ 溶液注入容量瓶前需恢复至室温。向容量瓶里转移溶液或加入蒸馏水时,都要用玻璃棒引流。
⑤ 当容量瓶中液体占容积2/3左右时应进行摇匀。
⑥ 在容量瓶的使用过程中,移动容量瓶,手应握在瓶颈刻度线以上部位,以免瓶内溶液受热而发生体积变化,使溶液浓度不准确。
⑦ 在读取容量瓶内液体体积时,要使眼睛的视线与容量瓶的刻度线平行。当液体凹液面与容量瓶的刻度线恰好相切时,立即停止滴加蒸馏水。
⑧ 实验结束后及时洗净容量瓶。
【目标四】误差分析(填“偏大”“偏小”“无影响”)
根据c==, 判断所配溶液的误差可能由n、V或、V引起
步骤
A.1l/L B.2l/L C.0.1l/L D.0.2l/L
3. ……此处隐藏7414个字……∶3;根据n=N/NA推断,粒子的数目之比等于物质的量之比。)
教师:最后,让我们一起来感受一下:
(1)如果把6.02×1023个直径为2.5 cm的硬币排成一行,可以来回于地球与太阳之间240.8亿次。
(2)如果把6.02×1023粒米给全球60亿人吃,每人每天吃一斤,要吃14万年。
(学生非常惊奇,更加意识到使用物质的量这个粒子集体的重要性,也不会再用物质的
量去描述宏观物质。)
物质的量的使用注意事项
教师:下列说法是否正确:
1 mol人 1 mol细菌 1 mol氧气分子 1 mol质子
学生:讨论并回答,1 mol人肯定是错的,1 mol细菌、1 mol质子、1 mol氧气分子是对的。
(“1 mol人”,学生都会很快反应是错误的,但1mol细菌很多学生会认为细菌是很小的,
是微观的,所以这种说法应该是正确的,所以借此要澄清学生的认识误区,不要认为只要是微观的概念就可以用摩尔来表示,应该是微观的物质粒子才行。)
教师:对于物质的量这一个新的物理量,在应用时应注意以下几个问题:
(1)物质的量及其单位——摩尔只适用于微观粒子如原子、分子、离子、质子、电子、中子等。不是用于宏观物质如:l mol人、1 mol大豆都是错误的。
(2)使用物质的量单位——摩尔时必须指明物质粒子的名称,不能笼统地称谓。1mol氧、1 mol氢就是错误的。只能说:l mol氧分子或1 mol氧原子。
(3)只要物质的量相同的任何物质,所含微粒数相同,反之也成立。
作业设计
1.“物质的量”是指 ( )
A、物质的质量 B、物质的微观粒子数 C.物质的质量与微观粒子数
D.能把物质的质量同微观粒子数联系起来的一个基本物理量
2.下列说法中正确的是 ( )
A.1 mol氧 B.1 mol H2SO4 C.1 mol米 D.1 mol面粉
3.在.1 mol H2O中 ( )
A.含1 mol H B.含6.02×1023个氢原子
C.含6.02×1023个水分子 D.含3.01×1023个氧原子
4.在0.5 mol Na2SO4中,含有的Na+数约为 ( )
A.3.01×1023 B.6.02×1023 C.0.5 D.1
5.1 mol下列气体中所含原子数最多的是 ( )
A. H2 B.CO2 C.CH4 D.O2
6.将1 mol CO与1 mol CO2相比较,正确的是 ( )
A.分子数相等 B.原子数相等 C.电子数相等 D.质子数相等
7.氢原子数目为9.03×1023的NH3是 ( )
A.1.5 mol B.1 mol C.0.5 mol D.2 mol
8.下列说法中正确的是(NA代表阿伏加德罗常数的值) ( )
A.1 mol N2和1 molCO所含的分子数都是NA
B.1 mol H2和1 mol CO2所含的原子数都是NA
C.1 mol CO和1 mol CO2所含的氧原子数都是NA
D.1 mol H2 SO4和1 mol H3PO4所含的原子数都是4NA
9.物质的量相同的甲烷和氨气具有不同的 ( )
A.电子数目 B.质子数目 C.分子数目 D.原子数目
10.相同物质的量的SO2和SO3,所含分子的数目之比为_______,所含O的物质的量
之比为_______ 。
答案:1.D 2.B 3.C 4.B 5.C 6.A 7.C 8.A 9.D
10.1:1 2:3
《化学计量在实验中的应用》教案6一、教材分析
“化学计量在实验中的应用”是以化学基本概念为基础,与实验紧密联系,强调概念在实际中的应用,本节教学对整个高中化学的学习乃至今后继续学习起着重要的指导作用。教材内容具有概念比较多,且抽象又难于理解的特点。教材首先从为什么学习这个物理量入手,指出它是联系微观粒子和宏观物质的纽带,认识引入物质的量在实际应用中的重要意义,即引入这一物理量的重要性和必要性。然后介绍物质的量及其单位,物质的量与物质的粒子数之间、物质的量与质量之间的关系。应注意不要随意拓宽和加深有关内容,加大学生学习的困难。
二、学情分析
对于“物质的量”这个新的“量”和“摩尔”这个新的“单位”,学生是很陌生的,而且也很抽象,但通过学习和生活经验的积累,他们已经知道了生活中常用的一些“量”和“单位”,如长度、质量、时间、温度,米、千克等。可采用类比方法,类比方法是根据两个或两类对象之间的某些属性上相同,而推出它们在其他属性也相同的一种科学方法。如物质的量与其他学生熟悉的量类比、摩尔与其他国际单位的类比、集合思想的类比等,运用类比思想阐释物质的量及其单位摩尔的意义,能够提高这两个概念与其他概念之间的兼容性,有利于对这两个陌生概念的深刻理解和掌握。
三、教学目标
1、知识与技能
(1)认识物质的量是描述微观粒子集体的一个物理量,认识摩尔是物质的量的基本单位;了解阿伏加德罗常数的涵义,了解摩尔质量的概念。
(2)了解物质的量与微观粒子数之间的换算关系;了解物质的量、物质的质量、摩尔质量之间的换算关系。
2、过程与方法
(1)通过类比的思想帮助学生更好的理解、运用和巩固概念。
(2)通过阅读教材、参考资料和联系生活实际,培养学生自学的习惯、探究的意识。
(3)体验学习物质的量这一物理量的重要性和必要性。
3、情感态度和价值观
(1)使学生认识到微观和宏观的相互转化是研究化学问题的科学方法之一,培养学生尊重科学的思想。
(2)调动学生参与概念的形成过程,体验科学探究的艰辛和喜悦。
四、教学重点与难点
1、教学重点
(1)物质的量的概念;
(2)物质的量和微粒数之间的相互转化;
(3)阿伏伽德罗常数的涵义;
(4)通过物质的量、质量、摩尔质量计算实际问题。
2、教学难点
物质的量的概念。
五、教学准备
多媒体、黑板
六、教学方法
采用创设情境方式,通过故事(一粒米的称量)和生活实例,以聚微成宏的科学思维方式,引出新的物理量 — 物质的量,搭建起宏观与微观的桥梁。通过学生列举生活中的常用单位 (箱、包、打等)与抽象概念类比、国际单位之间的类比、集合思想的类比教学,将抽象的概念形象化,让学生感受概念的生成过程,初步形成物质的量的概念并理解其重要性。
七、教学过程(略)
文档为doc格式