当前位置:首页 > 试题 > 数学试题

六年级上册《百分数应用题》教案

时间:2024-08-13 10:16:37
六年级上册《百分数应用题》教案9篇

六年级上册《百分数应用题》教案9篇

作为一名教师,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!下面是小编为大家整理的六年级上册《百分数应用题》教案,欢迎阅读与收藏。

六年级上册《百分数应用题》教案1

教学目标

1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。

2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。

教学重点和难点

理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。

教学过程设计

(一)复习准备

1.把下列各数化成百分数。

2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?

3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。

板书:分数应用题

(二)学习新课

1.成数的含义。

师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。

(1)填空:

“三成”是十分之( ),改写成百分数是( )。

“三成五”是十分之( ),改写成百分数是( )。

(2)把下面的“成数”改写成百分数。

七成 二成五 五成 九成九

十成 二成八 七成四 八成二

2.出示例1。

例1 小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五。去年收白菜多少吨?

(1)学生默读。

(2)这道题和复习中的第三题有什么不同之处?

(3)指名学生说解题思路。

师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。

板书:

=41.6×(1+25%)

=41.6×1.25

=52(吨)

答:今年收白菜52吨。

3.练习。

小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?

4.折扣的含义。

师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。

某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的( )%出售,也就是减价( )%。

5.出示例2。

例2 商店出售一种录音机,原价330元。现在打九折出售,比原价便宜了多少元?

(1)学生读题。

(2)问:打九折出售是什么意思?

(3)求比原价便宜了多少元?你想怎样解答?

(4)指名说解题思路。

板书:方法(一) 330-330×90%

=330-297

=33(元)

方法(二) 330×(1-90%)

=330×10%

=33(元)

答:比原价便宜了33元。

6.课堂小结。

今天我们学习了哪些知识?

师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。

(三)巩固反馈

1.填空:

(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。

(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。

(3)一种皮茄克打九折出售。这句话的意思是( )是( )的90%。

(4)一批旧书打五五折出售。这句话的意思是现价比( )便宜了( )%。

2.把下面的折扣数改写成百分数。

七折 九折 六五折 八五折 六八折

3.把下面的百分数改写成“成数”。

75% 60% 42% 100% 95%

4.一套西服,商店在节日里按八五折优惠出售。西服的原价是560元,西服现售价多少元?

5.东门乡去年的棉花产量比前年增加二成。去年的棉花产量是267.6吨,前年的棉花产量是多少吨?

6.一种画册原价每本6.9元,现在按每本4.83元出售。这种画册按原价打了几折?

7.张利在减价商品柜台买了一个水壶,打“八五”折,实际花了25.5元。这个水壶原价多少元?

8.小强花315元买了一台收录机,这台收录机是打七五折出售的。小强买这台收录机少花了多少元?

课堂教学设计说明

本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。

六年级上册《百分数应用题》教案2

[学习目标]

1、掌握分数、百分数应用题的结构特点和解题方法,会解

答一至三步计算的分数、百分数应用题,会有条理地说

明它们的思路,会按照题目的具体情况选择简便的解答

方法,能应用所学的知识解决生活中的一些简单的实际

问题。

2、知道百分数在实际中的应用,并会解答有关的实际问题。

[重点、难点]

1、正确判断作为单位“1”的量是学习的重点。

2、百分数的应用是学习的重点。

3、在发芽率的公式中为什么要乘以100%是学习的难点。

4、在工程问题中,用“1”表示工作总量,用单位时间

内完成工作总量的几分之几表示工作效率,是学习

的难点。

5、有条理地说明解题思路是学习的难点。

第一课时:10、30

一、复习分数乘法的意义

一个数乘以分数就是求这个数的几分之几。

如:

二、要解决的问题

1、求一个数的几分之几(百分之几)

2、已知一个数的几分之几,求这个数。

如:(1)15的是多少?

(2)已知一个 ……此处隐藏4584个字……生讨论。

师追问:0.315%×6表示什么意思?

又追问:1+0.315%×6又表示什么呢?

再追问:再用180乘以这个结果得到什么?

(三)课堂总结

今天我们学习了哪些知识?

师述:我们学习了有关储蓄的知识,知道了本金、利息和利率,以及它们三者之间的关系。特别是学会了求利息的方法:本金×利率×时间=利息。还知道了储蓄的意义。

(四)巩固反馈

1.小华今年1月1日把积攒的零用钱50元存入银行,定期一年。准备到期后把利息捐赠给“希望工程”,支援贫困地区的失学儿童。如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.王宏买了1500元的国家建设债券,定期3年。如果年利率是13.96%,到期后他可获得本金和利息一共多少元?

3.赵华前年10月1日把800元存入银行,定期2年。如果年利率按11.7%计算,到今年10月1日取出时,她可以取出本金和利息共多少元?下列列式正确的是[ ]

A.800×11.70%

B.800×11.70%×2

C.800×(1+11.70%)

D.800×(1+11.70%×2)

4.王老师两年前把800元钱存入银行,到期后共取出987.2元。问两年期定期存款的利率是多少?

5.1993年末,我国城乡储蓄存款余额达14764亿元,比1992年末增加3219亿元。增长百分之几?(百分号前面保留一位小数。)

6.李佳有500元钱,打算存入银行两年。有两种储蓄办法,一种是存两年期的,年利率是11.70%;另一种是先存一年期的,年利率是10.98%,第一年到期时再把本金和利息取出来合在一起,再存入一年。选择哪种办法得到的利息多一些?

课堂教学设计说明

本节课是在学生学习了一个数是另一个数的百分之几和求一个数的百分之几是多少的基础上进行的。教学时,紧紧抓住这两种类型的应用题,引到新知识上。在教学方法上采用了老师讲解和学生自学相结合,让学生有较大的空间去发挥自己的思路。在整个教学过程中,都渗透着爱国主义教育。另外,本节课中概念较多,在教学时,注意在教授解题方法和分析解题思路中去帮助学生理解和记忆概念。在最后练习中,还设置了一道离生活比较近、但难度不是很大的题,既利于帮助学生巩固知识,而且学生也会比较有兴趣。

板书设计

六年级上册《百分数应用题》教案9

一、教学目的:

1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。在理解题意、分析数量关系的基础上正确解答百分数应用题。

2、通过划线段图、类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。

3、教学重点是理解百分数应用题的解题思路,结构特征和解题方法。

二、教学过程:

(一):复习百分数应用题的数量关系

判断单位“1”,说出数量关系

⑴男生占全班人数的4/5

⑵今天比去年增产二成五

⑶节约了15%

⑷期中考试的优秀率为52%

⑸打八折出售

通过同学们对关键句的分析、叙述,百分数应用题的数量关系、解题思路和解题方法,是完全一样的,都是要紧紧抓住数量之间的关系,准确判断单位“1”的量,确定解题方法。

(二):二基本题复习

分析解答下面各题,比较它们之间有什么相同点和不同点

⑴建造一栋楼房,计划投资100万元,实际用了90万元,节约了百分之几?

⑵建造一栋楼房,用了90万元,比计划节约了10%,计划投资多少万元?

⑶建造一栋楼房,计划投资100万元,实际节约了10%,节约了多少万元?

⑷建造一栋楼房,计划投资100万元,实际超用了10%,实际投资了多少万元?

分组讨论这一组题目的解法,在弄清解题思路和正确列式的基础上进行比较:它们之间有什么相同点和不同点?

这组题他们的单位“1”是相同的,数量关系式也是相同的,而数量之间的关系有所不同,解答方法也不尽相同,有乘法也有用方程解。

(三):变式练习:

根据题意列出算式和方程:

水果店运来苹果120千克,,运来梨多少千克?

1、运来梨比苹果多25%

2、运来的比苹果少25%

3、运来的苹果是梨的25%

4、运来梨是苹果的25%

5、运来苹果比梨少25%

6、运来的苹果比梨多25%

7、运来梨比苹果的25%少2/5千克

在学生分析解答的基础上,教师总结:这些题目是百分数应用题中比较典型的,也是最基本的,解答时必须要准确判断单位“1”,弄清要求数量与单位“1”之间的关系和数量对应的百分率,确定解题方法。

(四):发展变化题练习

1、甲乙两车同时从两地相向而行,在距终点30千米处相遇,相遇时甲车行了全程的45%,两地相距多少千米?

⑴根据题意画出线段图,弄清条件和问题。

⑵列方程解答

解:设全程为x千米1/2x—45%x=30

⑶用30算术方法会解答吗?30÷(1/2—45%)

用算术方法解答,必须要找到30千米对应的百分率。要根据乘除法的关系列出算式。

2、修一条400米的路,第一天修了25%,第二天修了30%。两天共修多少米?

指名用不同的方法分析解答:

解一:400×25%+400×30%

解二:400×(25%+30%)

如果把“第二天修了30%”改成第二天“修了剩下的40%”如何解答?

分组讨论不同的解法:

解一:400-400×25%=300(米)

300×40%=120(米)

120+100=220(米)

解二:(1-25%)×40%÷30%

400×(25%+30%)=220(米)

讨论:改变后的题与原来的题目有什么不同?

单位“1”不同,因而解答的方法也不一样。

3、比较练习:

甲乙两粮库,甲库比乙库多存粮20%,如果从甲粮库中调出40吨,则两粮库的存粮数相等(放入乙粮库),甲乙两粮库原来存粮各多少吨?

在分析解答“如果从甲粮库中调出40吨,则两粮库的存粮数相等”的基础上加入“放入乙粮库”再分析。

比较:这两题有什么不同?甲粮库中调出40吨,就相等说明甲库比乙库多40吨。而从甲粮库中调出40吨放入乙库,就相等,说明甲库原来不是比乙库多40吨,而是多80吨。所以第一题列式:400/20%。而第2题列式400x2/20%

(五):课堂小结:

今天我们复习了什么内容?你有哪些收获?

《六年级上册《百分数应用题》教案9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式